NASA заказало учёным тянущий луч
Американские исследователи намерены научить космические аппараты забирать пробы при помощи лучей света. Новая технология расширит возможности по исследованию космических тел.
Группа физиков из космического центра Годдарда (

В рамках программы инновационных передовых концепций (

Поначалу группа размышляла над технологией перемещения лазером орбитального мусора. Но потом новаторы решили, что крупные объекты таким методом передвигать сложно. К тому же, хотя очевидно, как можно лазером отталкивать предметы (используя световое давление), не понятно — как их притягивать?
Оказывается, если объекты малы (космические пылинки, песчинки, живые клетки), с помощью лазеров их действительно можно тащить к источнику света.
Различные группы физиков давно проводят опыты с так называемыми оптическими ловушками, в которых при помощи лучей удерживаются во взвешенном состоянии или передвигаются отдельные молекулы, вирусы или микрочастицы. Эти опыты послужили отправной точкой в новой работе.

Команда определила три различных подхода для транспортировки частиц, гласит
В одном случае она предлагает использовать некую вариацию оптических щипцов. Метод предполагает применение встречных пучков волн, формирующих световое кольцо (напоминающее луч-бублик, созданный некогда японцами).
В лабораторных опытах американцы уже показали, что попеременно регулируя интенсивность составляющих такого смешанного пучка, можно нагревать воздух с разных сторон от захваченной частицы, тем самым заставляя её двигаться. Правда, этот способ работает лишь в атмосфере.

Второй вариант тянущего луча опирается исключительно на электромагнитное взаимодействие, так что годится для любой среды.
Этот метод назван луч-соленоид (solenoid beam). В нём пики интенсивности словно закручиваются спиралью вокруг оси распространения. Первые опыты учёных NASA показали, что такой световой «винт от мясорубки» способен тянуть мелкие частицы по направлению к источнику излучения.
Третий вариант предполагает использование пучков Бесселя (
Луч Бесселя может формировать прямо перед объектом и за ним определённый набор электрических и магнитных полей, способных приводить частицы в движение, в том числе в сторону излучателя. (Как это работает, объяснила группа физиков из Китая в своей

Группа из центра Годдарда намерена детально протестировать все три способа создания тянущего луча, отобрать оптимальный и далее уже развивать его.
Заметим, лазер для взятия проб имеется в арсенале американского аппарата Curiosity, который должен стартовать к Марсу в конце ноября. Но там луч лишь испаряет небольшую порцию камня, а состав паров дистанционно определяет спектрометр.
В случае успеха нового проекта луч лазера мог бы засасывать крошечные порции вещества на борт аппарата. Аналогичным способом спутник мог бы брать пробы из верхних слоёв атмосферы прямо с орбиты, или захватывать пылинки из кометного хвоста, пролетая на безопасном расстоянии от небесной странницы, или дистанционно вытягивать песчинки с поверхности астероида.
В отличие от механических пробоотборников тянущий луч мог бы работать длительный период времени без отключения, подчёркивают авторы проекта. Тем самым увеличивалась бы научная ценность миссии, и снижался технический риск.
Но пока этот проект находится лишь в начале пути. Американцам предстоит на практике создать систему, за которую ещё никто не брался.