Анонсировано революционное усовершенствование органических транзисторов на основе монокристаллов
С выходом на сцену более дешевых и гибких органических транзисторов в области гибких электронных технологий грядет революция.
Новые устройства заменят дорогие твердые полупроводники на основе кремния. Все бы хорошо, но пока слишком мало известно о том, как сгибание этих тонкопленочных электронных устройств скажется на их работоспособности, отметили ученые из Массачусетского университета в Эмхерсте.
В издании Nature Communications ученые Алехандро Брисеньо и Альфред Кросби с докторантом Маркосом Рейес-Мартинесом сообщили о результатах исследования того, как микромасштабное сморщивание влияет на электрическую эффективность монокристаллических полупроводников на основе углерода.
Исследователи впервые применили неоднородные деформации на проводящий канал органического транзистора и объяснили наблюдаемый эффект.
«Результаты релевантны современной технической индустрии, поскольку транзисторы запускают логику всей потребительской электроники. В экране смартфона, например, каждый пиксел включается и выключается сотнями тысяч или даже миллионами миниатюрных транзисторов», пояснил Рейес-Мартинес.
«Обычно транзисторы производятся из неорганического материала, такого как кремний», добавил он. „Мы работаем с кристаллическим полупроводником под названием рубрен. Это органически материал на углеродной основе, обладающий факторами работы, таким как подвижность носителя заряда, которые превосходят аналогичные факторы аморфного кремния. Органические полупроводники — любопытная замена кремния, поскольку их свойства можно настраивать, их можно наносить на разные основания, включая мягкие, и работать они способны при относительно низких температурах. Устройства на основе органических полупроводников дешевле традиционных, поскольку для работы им не требуются высокие температуры, чистые помещения и дорогая обработка“.
До сих пор большинство исследователей сосредоточено на том, чтобы научиться контролировать пагубное влияние механической деформации на электрические свойства транзистора. Однако в ряду систематических экспериментов команда обнаружила, что механическая деформация снижает эффективность лишь в определенных условиях, то есть временами она также либо усиливает ее, либо не оказывает никакого эффекта.
«Наша цель не только в том, чтобы продемонстрировать эти эффекты, но и объяснить и понять их. Мы использовали преимущество упорядоченной структуры ультратонких органических кристаллов рубрена для изготовления высокоэффективных ультратонких транзисторов», сообщил Рейес-Мартинес. „Работа в подобном масштабе над монокристаллом проведена впервые“.
Хотя монокристаллы считаются слишком хрупкими для использования в гибких устройствах, ученые обнаружили, что кристаллы толщиной от 150 нанометров до 1 микрометра обладают достаточными параметрами, чтобы сморщиваться и применяться на любой эластомерной подложке.
«Наши эксперименты особенно важны, поскольку они помогают исследователям работать с гибкими электронными устройствами для определения пределов работоспособности новых материалов под воздействием чрезвычайной механической деформации, когда устройства, например, наносятся на кожу».