Найдено эффективное решение в борьбе с вирусами

Большинство бактериальных инфекций можно лечить с помощью антибиотиков, которые открыты несколько десятилетий назад, например пенициллином. Однако такие препараты бесполезны против вирусных инфекций, включая грипп, простуду и смертельные геморрагические лихорадки вроде Эбола.

Создавая новое средство против вирусов, его автор подражал природным механизмам клеточной защиты (фото MIT).

Команда исследователей из лаборатории Линкольна при Массачусетском технологическом институте (MIT Lincoln Laboratory) разработала препарат, который может идентифицировать клетки, заражённые любым типом вируса, а затем убить эти клетки, чтобы прекратить инфекцию.

В статье, опубликованной в журнале PLoS ONE, исследователи рассказали о тестировании своего препарата, который был обращён против 15 вирусов. Учёные обнаружили, что средство оказалось эффективным против всех вирусов, в том числе риновирусов, вызывающих простуду, против гриппа H1N1, желудочного гриппа, вируса полиомиелита, лихорадки денге и некоторых других видов геморрагической лихорадки.

Мишенью препарата является двойная РНК, которая производится только в клетках, заражённых вирусами. «Теоретически она должна работать против всех вирусов, — говорит Тодд Райдер (Todd Rider, на фото под заголовком), старший научный сотрудник химической лаборатории Линкольна. — Поскольку технология имеет широкий спектр действия, она потенциально может быть использована и для борьбы со вспышками новых вирусных инфекций, таких как 2003 ТОРС (тяжёлый острый респираторный синдром)».

Идея противовирусной терапии широкого спектра пришла к Райдеру 11 лет назад после разработки биосенсора CANARY (Cellular Analysis and Notification of Antigen Risks and Yields), который может быстро идентифицировать болезнетворные микроорганизмы.

«Если вы обнаружили патогенные бактерии в окружающей среде, то наверняка сможете подобрать антибиотик, который может быть использован для лечения того, кто заразился такого рода инфекцией. В то же время существует немного видов лечения, если речь идёт вирусном заболевании», — добавляет исследователь.

Есть несколько препаратов для борьбы с конкретными вирусами, такие как ингибиторы протеаз, использующиеся для контроля ВИЧ-инфекции, но они сравнительно малочисленны и восприимчивы к вирусным сопротивлениям.

Райдер черпал вдохновение для своего терапевтического средства, получившего название DRACO (Double-stranded RNA Activated Caspase Oligomerizers), из системы защиты самих клеток.

Когда вирусы заражают клетки, они подчиняют их клеточные механизмы в своих целях, то есть создавая несколько копий вируса. Во время этого процесса вирусы создают длинные нити двухцепочечной РНК (дцРНК), которые не встречается в человеческих клетках, а также в клетках животных.

В рамках своей естественной защиты от вирусных инфекций человеческие клетки вырабатывают белки, которые цепляются к дцРНК, таким образом давая начало каскаду реакций, которые предотвращают размножение вируса внутри клетки. Тем не менее многие вирусы могут перехитрить эту систему, блокируя один из шагов в данном каскаде реакций.

Райдер решил объединить дцРНК-связывающий белок с другим белком, который вызывает клеточный апоптоз (запрограммированное самоубийство клетки). Такой механизм запускается в клетке, например, когда клетка определяет, что становится злокачественной. Поэтому когда один конец DRACO связывается с дцРНК, это сигнализирует другому концу DRACO инициировать клеточное самоубийство.

Сочетание этих двух элементов является отличной идеей и весьма оригинальным подходом, — комментирует Карла Киркегаард (Karla Kirkegaard), профессор микробиологии и иммунологии Стэнфордского университета. «Вирусы довольно хорошо развивают устойчивость к различным методикам, которые мы применяем в борьбе с ними, но в этом случае трудно представить простой путь к лекарственной устойчивости», — добавляет она.

Каждый DRACO включает в себя специальные маркеры, взятые из клеточных белков, которые позволяют пересечь барьер в виде клеточных мембран, будь то клетка человека или животного. Однако если дсРНК не присутствует в клетке, DRACO покидает её, оставляя невредимой.

Изображения полученные с помощью микроскопа, показывают, что DRACO успешно лечит вирусные инфекции. В наборе фотографий видно как риновирус (вирус простуды) убивает необработанные клетки человека (внизу слева), в то время DRACO не имея токсичности в неинфицированных клетках (справа вверху) и лечит инфицированные популяции клеток (внизу справа). Кроме того, в правом наборе фотографий показан вирус геморрагической лихорадки денге. Вирус убивает необработанные клетки обезьяны (внизу слева), в то время DRACO не имея токсичности в неинфицированных клетках (справа вверху) лечит инфицированные популяции клеток (внизу справа) (фото MIT).

Большинство тестов, представленных в данном исследовании, были сделаны с использованием клеточных культур человека, а также животных, культивированных в лаборатории, но исследователи проверили работу DRACO и на мышах, инфицированных вирусом гриппа H1N1. DRACO полностью излечил грызунов от инфекции. Тесты также показали, что средство само по себе нетоксично для мышей.

Исследователи в настоящее время тестируют DRACO против других вирусов, встречающихся у мышей, и при этом продолжают получать многообещающие результаты. Райдер сообщает, что надеется получить разрешения для испытания технологии на более крупных животных и провести клинические испытания на человеке.

По материалам статьи, опубликованной в Science Daily.

Николай Кляшторный, Membrana.ru





Интересные новости
В Туреччині виявили каналізацію, якій 2250 років - винахід античних інженерів досі працюєВ Туреччині виявили каналізацію, якій 2250 років - винахід античних інженерів досі працює
Блок рекламы


Похожие новости

На Карибах знайдено бактерії-гіганти - можна побачити навіть без мікроскопаНа Карибах знайдено бактерії-гіганти - можна побачити навіть без мікроскопа
Марсоход NASA принял первое самостоятельное решениеМарсоход NASA принял первое самостоятельное решение
Основатель Amazon нанял нобелевских лауреатов и ведущих ученых для проекта по борьбе со старениемОснователь Amazon нанял нобелевских лауреатов и ведущих ученых для проекта по борьбе со старением
Найдено недостающее звено звездной эволюции: почему одна звезда не может быть старше Вселенной
Учёные из США и Кореи предложили решение для преобразования отработанного тепла в электричество
Blue Origin Безоса получила разрешение на коммерческие полеты
Предложено решение для создания квантовой памяти в полупроводниках
Учёные создали цифровую фотокамеру с разрешением 3200 мегапикселей. Ей будут снимать звёздное небо
Микропузырьки оказались удивительно эффективны в борьбе с раком
Найдено объяснение спиральным рукавам Млечного пути
Последние новости

Подгружаем последние новости