Нейросети научили угадывать до 24% паролей на сайте

Исследователи из Технологического института Стивенс построили генеративно-состязательную нейросеть (GAN), которая может обучаться угадывать пароли, причем делает это весьма успешно. Результаты исследования были опубликованы в начале сентября этого года. , пишут AIN.UA

Авторы исследования отмечают, что лучшие программы по подбору паролей, типа HashCat или John the Ripper, дают пользователям возможность сверять хэши миллиардов паролей в секунду. В добавление к стандартным «словарным» атакам, они могут расширять списки паролей, используя общие правила их генерации. И хотя подобные правила хорошо работают для существующих баз паролей, создание новых правил — достаточно трудоемкое задание.

С целью доказать, что нейросети под силу с ним справиться, авторы исследования и создали технологию PassGAN, которая помогает нейросетям угадывать пароли. PassGAN генерирует возможные пароли, основываясь на результатах нейросети, которую обучали на списках скомпрометированных паролей.

«Наш эксперимент показал, что этот подход — очень многообещающий. Когда мы оценивали PassGAN на двух крупных базах данных, нам удалось вдвое обойти результативность существующих инструментов… PassGAN может генерировать большое количество паролей, которые недоступны текущим инструментам», — утверждают они.

По данным авторов исследования, на примере паролей, утекших из LinkedIn, нейросеть смогла угадать 12%. Но когда ей в помощь дали некоторые правила генерации паролей, созданные людьми (те, что работают в HashCat), она обучилась так эффективно, что смогла угадать до 27% — это на 24% успешных догадок больше, чем при использовании только HashCat.

Возможно, это — один из первых случаев, когда GAN использовали для подбора паролей. Ее же можно использовать и для более лучшей защиты данных, для проверки того, какие пароли имеют наибольший шанс быть взломанными.


Ольга Карпенко, AIN





Последние новости

Подгружаем последние новости