Интеллектуальный напёрсток заменит 3D-мышь
В Университете штата Вайоминг
!["Интеллектуальный напёрсток" 3DTouch (фото: Department of Computer Science University of Wyoming).](https://novostey.com/i4/2014/07/04/9222b1934b46e4381ba4badb5401a0fe.jpg)
University of Wyoming).
Различные методы для отслеживания перемещений в трёх измерениях используются давно. Microsoft Kinect следит за движениями пользователя при помощи камеры и датчика глубины пространства. Wii Remote использует акселерометр и CMOS-матрицу. Оба решения зарекомендовали себя в игровой сфере, а в последнее время находят применение и в других областях — включая дистанционное управление марсоходами и военной техникой.
В других устройствах схожего назначения используются электромагнитные поля (например, Polhemus Liberty), оптический трекинг (NaturalPoint OptiTrack) или гибридная система из ультразвукового и инерциального отслеживания (Intersense IS900). При всех различиях эти методы объединяют существенные ограничения: они привязаны к базовой станции, пространству перед массивом камер или радиусу действия эмиттера. Вдобавок системы с ультразвуковыми и электромагнитными способами отслеживания оказались слишком чувствительны к помехам.
![Испытание функционального аналога 3DTouch - Polhemus Liberty (фото: polhemus.com).](https://novostey.com/i4/2014/07/04/946319ea19a927aff468f6235cc00ada.jpg)
С этими же ограничениями столкнулся и коллектив научного общества 3DUI, в котором разрабатывались прототипы «цифрового напёрстка». Ранний вариант назывался Ring mouse (кольцевая мышь). Он представлял собой небольшое кольцо с двумя кнопками, которое надевалось на указательный палец. Использование ультразвуковой системы отслеживания было недостаточно точным и удобным, а длительно нажимать кнопки на кольце слишком утомляло. По схожим причинам закрылся проект FingerSleeve, в котором использовался магнитный трекер.
Инерциальные системы слежения оказались более удачными в силу самодостаточности. Они не требуют внешних устройств, поскольку используют наборы встроенных датчиков. Среди них есть акселерометры, гироскопы и цифровые компасы, помогающие оценить изменения положения в пространстве.
Сочетание таких вариантов и было использовано группой исследователей из Университета штата Вайоминг. Многочисленные датчики наделяют «цифровой напёрсток» 3DTouch пятью степенями свободы. С их помощью определяются перемещения вверх/вниз, вправо/влево, вперёд/назад, а также поворот вокруг оси и наклон. Они не только превращают закреплённый на пальце гаджет в указующее устройство для трёхмерных систем, но также позволяет пользователям перенести объекты в 3D-пространство и обеспечивают реалистичные ощущения от работы.
![С 3DTouch можно работать в 2D- и 3D-режиме сходным образом (изображение: Anh Nguyen / University of Wyoming).](https://novostey.com/i4/2014/07/04/7fd5cac4a36796ac285f2edda9aaee67.jpg)
Поскольку 3DTouch разрабатывали как универсальное устройство, в него также встроили оптический сенсор с ИК-лазером, как у обычной мыши. Он используется для работы с традиционным двумерным интерфейсом в любой операционной системе. Примечательно, что в качестве поверхности при этом можно применять всё что угодно – от офисного стола до собственной ладони.
На данный момент устройство находится на стадии раннего прототипа. Это самоделка на платформе Arduino, от которой сигнал передаётся по проводам в ноутбук. Разработчики поясняют, что эти недостатки временные и обусловлены размерами использованных компонентов. Образец собрали буквально из того, что было под рукой. Серийные устройства будут в разы компактнее, а провода заменит пара модулей XBee, выполняющих передачу данных по экономичному протоколу ZigBee.
![Прототип 3DTouch на платформе Arduino (фото: Amy Banic / University of Wyoming).](https://novostey.com/i4/2014/07/04/3e985faed8001c43184119b4bbe20f52.jpg)
Несмотря на кустарный вид, уже сейчас удалось достичь впечатляющих показателей. При использовании поверхностей с тремя различными текстурами (джинсы, коврик для мыши и деревянный стол) средняя ошибка позиционирования составляла 1,10 мм. Ошибка в один миллиметр с долями сопоставима с таковой у оптических мышей с разрешением 400 точек на дюйм и частотой сканирования 1 500 кадров в секунду. В 3D-режиме ошибка определения направления составляла 2,33 градуса, что гораздо меньше, чем у большинства других систем.
3DTouch и подобные устройства ввода стали чрезвычайно актуальными после разработки шлемов виртуальной реальности Oculus Rift и Google cardboard. Видеть и слышать детально прорисованный мир гораздо интереснее, если есть возможность потрогать его.