Международной группе учёных впервые удалось добиться переноса квантовых состояний частиц в твёрдотельном материале. По мнению многих специалистов, получение устойчивого эффекта "телепортации" позволит в будущем создать работоспособную модель квантового компьютера.
Отчёт об этом эксперименте опубликован в журнале Science.
Экспериментбыл осуществлён "внутри" синтетического алмаза, содержащегозначительную долю изотопов углерода-13. На иллюстрации: искусственныйкристалл Apollo (фото Steve Jurvetson).
Опыты по установлению и удержанию дистанционной корреляции между наблюдаемыми физическими свойствами объектов проводятся не первый год. Учёные уже "связывали" несколько отдельных атомов, например, восемь ионов кальция, или группу фотонов.
Спутать же частицы в твердотельных системах, которые теоретически обеспечат квантовому состоянию бóльшую устойчивость, до сих пор ни у кого не получалось.
Группа физиков под руководством профессора Йорга Врахтрупа (Jörg Wrachtrup) из университета Штутгарта (Universität Stuttgart) продемонстрировала, что возможно добиться квантовой запутанности двух или трёх частиц в кристаллической решётке.
Напомним, что под запутанностью подразумевается передача от одной частицы к другой набора каких-либо её квантовых характеристик (например, значения спина у электрона) – одной или нескольких. Мы подробно писали об этом удивительном явлении здесь и здесь.
В тот момент, когда Золушка делает замер поляризации первой из спутанных частиц, нам становится известно, какая характеристика будет у второй, которую измеряет прекрасный принц (иллюстрация с сайта ipod.org.uk).
Поскольку характеристика частицы – в силу принципа неопределённости Гейзенберга – носит вероятностный характер, это открывает новые возможности в вычислительной технике: там, где обычный компьютер вычисляет функцию от одной переменной, квантовый компьютер получает сразу все значения функции, "размазанные" в пространстве волнообразно,– производительность должна вырасти экспоненциально.
Но вот добиться запутанности в лабораторных условиях – не так просто. В первую очередь потому, что необходимо обеспечить устойчивость квантовых состояний: связанные частицы, взаимодействуя с внешней средой, стремятся вернуться из спутанного состояния в "обычное". И чем частиц больше, тем их сложнее удержать.
В ходе эксперимента в структуру искусственного алмаза добавили атом азота – он получает один спутанный электрон, взаимодействуя с соседним атомом углерода.
Впоследствии эти частицы можно с помощью лазера "обратить" в квантовое состояние спутанности, а потом, прикладывая к ним магнитное или электростатическое поле, "переместить" характеристику электронного спина от атома азота атому углерода в решётке.
По словам Врахтрупа, аналогичная технология используется уже более 10 лет, например, при спектроскопии ядерного магнитного резонанса, и открытие его группы состоит в том, что им удалось добиться эффекта переноса для твердотельной системы, причём при комнатной температуре.
"Качество полученной нами квантовой запутанности превосходит все достигнутые на сегодняшний день результаты", — говорит профессор Врахтруп (фото с сайта uni-stuttgart.de).
Алмазы – очень привлекательный материал для создания квантовых компьютеров, поскольку в них когерентность состояний сохраняется гораздо дольше, и её проще контролировать. Соответственно, на выходе такого устройства будет меньше ошибок.
Впрочем, остаются вопросы относительно количества электронов, которые можно связать в кристаллической решётке. А это – важнейшая вычислительная характеристика гипотетического квантового компьютера.
Но немецкий учёный уверен: в будущем эта проблема будет решена.