От солнечной энергии к водородному топливу

Исследователи из Федеральной политехнической школы Лозанны (Швейцария) разработали новый метод выделения водорода из воды с помощью солнечной энергии. Он не требует высоких температур и применения благородных металлов, а по эффективности сравним с лучшей на сегодня технологией, использующей платиновые катализаторы.

Солнце всегда рассматривалось как основной источник в альтернативной энергетике. В существующих схемах его энергия преобразуется в электрическую напрямую (с помощью фотоэлементов) или через нагрев теплоносителя в станциях коллекторного типа.

Отдельные компании разрабатывают комбинированные варианты, в которых световая энергия оптического диапазона и тепловой части спектра утилизируются по-разному. Это необходимо потому, что преобразование солнечной энергии всегда сопряжено с задачей её накопления. Электростанция должна работать круглосуточно и обладать запасом мощности, чтобы обеспечивать пиковые нагрузки сети в определённые часы.

Солнечная электростанция Gemasolar (Севилья, Испания. Фото: swns.com).
Солнечная электростанция Gemasolar (Севилья, Испания. Фото: swns.com).

Запасать энергию в виде тепловой часто оказывается менее затратно, чем обслуживать ёмкие аккумуляторы и преобразователи напряжения. Однако есть и другой способ накапливать полученную от Солнца энергию – расходовать её на выработку из воды водорода для топливных элементов.

Любая установка, выделяющая водород из воды, тратит на это некоторое количество энергии. В разное время были предложены два основных пути: нагревать воду, доводя её до состояния перегретого пара, и затем пропускать его через электрическое поле с напряжением в тысячи вольт, или использовать электролиз.

Второй метод в целом безопаснее и не требует изначально высоких затрат энергии для начала реакции. Всё, что требуется на первом этапе – преодолеть барьер в 1,7 В. Для этого можно применять фотоэлектрохимические ячейки, которые непосредственно будут выделять водород, или обычный электролизер, питаемый от солнечных батарей.

Выделение водорода из воды методом электролиза (фото: EPFL / LPI / Alain Herzog).
Выделение водорода из воды методом электролиза (фото: EPFL / LPI / Alain Herzog).

Пока специализированные ячейки – перспективная и дорогая технология. Чаще разработчики шли по второму пути, используя солнечные батареи из трёх последовательно соединённых элементов с разницей потенциалов по 0,6 – 0,7 В.

До сих пор эффективность преобразования солнечной энергии таким способом была ниже десяти процентов. Рекордный показатель в 12,4% был достигнут в 1998 году на компактной экспериментальной установке с платиновым электродом и другими дорогостоящими деталями. Высокая себестоимость сделала неоправданным промышленное применение, и о технологии забыли до лучших времён.

Параллельно исследователи выполняли поиск более дешёвых материалов, способных улучшить характеристики как самих фотоэлементов, так и электролизёра, обеспечив большую разность потенциалов и сравнимый с платиной показатель эффективности.

Таким вариантом стали катализаторы на основе никеля и железа, а также перовскитные фотоэлементы. Изначально перовскитом называли сам минерал (титанат кальция), отрытый в 1839 году на Уральских горах. Затем термин «перовскиты» стал применяться и к другим соединениям, имеющим схожее строение кристаллической решётки.

Электрод и перовскитная солнечная батарея из двух элементов (фото: EPFL).
Электрод и перовскитная солнечная батарея из двух элементов (фото: EPFL).

Редакция журнала «Science» указала перовскиты в списке десяти научных прорывов прошлого года за их многообещающие свойства в солнечной энергетике. Перовскитные солнечные панели гораздо легче традиционных, изготовленных из кремния. Сегодня они производятся методом простого осаждения из газовой фазы, поэтому обходятся примерно вчетверо дешевле кремниевых по себестоимости.

В каждой перовскитной ячейке создаётся разность потенциалов около одного вольта. Используя всего пару элементов такой солнечной батареи (вместо трёх) и дешёвые электроды, исследователи из Лаборатория фотоники EPFL под руководством докторанта Цзиншань Ло получили эффективность преобразования солнечной энергии в водород на уровне 12,3%. На сегодня это можно считать рекордом среди концептов, допускающих малозатратное масштабирование до уровня промышленной установки.

Главной проблемой остаётся неустойчивость элементов на основе перовскита, что приводит к падению напряжения по мере их работы. Природа этого явления пока не ясна. В прошлом году группа Генри Снейта (Henry Snaith) из Оксфордского университета полностью изменила представления о процессах движения экситонов в фотоэлементе из титаната кальция, что позволило упростить их изготовление. Возможно, дальнейшее изучение перовскитов поможет добиться стабильности характеристик солнечных панелей на их основе.



Андрей Васильков, Компьютерра





Интересные новости
Коли на Землі очікуються магнітні бурі: прогноз до кінця травняКоли на Землі очікуються магнітні бурі: прогноз до кінця травня
Блок рекламы


Похожие новости

Обсерватория солнечной динамики сделала снимок мощной вспышки на СолнцеОбсерватория солнечной динамики сделала снимок мощной вспышки на Солнце
Bee-Zed: самый загадочный астероид в Солнечной системеBee-Zed: самый загадочный астероид в Солнечной системе
Настоящая революция в энергетике: термоядерный реактор впервые добыл больше энергии, чем затратил
Водород станет основным источником энергии для Южной Кореи к 2050 году
Аккумуляторы на базе магния смогут хранить в два раза больше энергии, чем литиевые
Обнаружен фтор в галактике на рекордном расстоянии от Солнечной системы
В Солнечной системе обнаружена самая большая из известных комет
Астронавты МКС вышли в открытый космос для замены солнечной панели
Гринпис: китайские дата-центры увеличат к 2035 году использование электроэнергии в четыре раза и нарастят выбросы вдвое
Учёные в 100 раз повысили выработку энергии из «мусорного» тепла с помощью новых оптических антенн
Последние новости

Подгружаем последние новости