Исследователи обнаружили новые детали свёртывания крови

Совместная работа учёных из университета Иллинойса (University of Illinois at Urbana-Champaign) и медицинского колледжа в Мейо (Mayo College of Medicine) показала, чем обусловлена эластичность молекулы фибриногена, которая активно участвует в образовании тромба.

Всем известно, что благодаря свёртываемости крови затягиваются раны, что есть такая болезнь – гемофилия, когда процесс образование кровяных сгустков нарушается, что из-за образовавшегося в крови тромба может произойти закупорка сосудов (мозга, сердца, лёгких) и человек может погибнуть.
В молекуле фибриногена порядка миллиона атомов, учёным понадобилось около шести месяцев, чтобы обсчитать всю модель (фото Brian Stauffer).
Вмолекуле фибриногена порядка миллиона атомов, учёным понадобилось околошести месяцев, чтобы обсчитать всю модель (фото Brian Stauffer).

Другим словом, тромб как спасает жизни, так и отнимает. Чтобы понять при каких условиях и как происходит тромбообразование, и какие лекарства помогут повернуть процесс в ту или иную сторону, учёные решили установить во всех деталях, отчего зависит эластичность фибриногеновых волокон.

Поясним. При разрушении стенки сосуда, к примеру, к месту травмы устремляются тромбоциты и под влиянием особых белков выделяют тромбопластин, который вместе с другими веществами способствует превращению белка фибриногена в его активную форму — фибрин. Образующиеся сети эластичного фибрина захватывают клетки крови, которые "затыкают" оставшиеся дырки.

Фибриногеновые молекулы очень хорошо тянутся (до двух-трёх раз от первоначальной длины). Благодаря этому они хорошо выполняют свою функцию – растягиваются под давлением подступающей крови.

Учёные из лаборатории Клауса Шультена (Klaus Schulten) университета Иллинойса решили выяснить, что определяет эластичность фибриногена. При этом авторы исследования решили не мелочиться (или как раз наоборот?) и рассчитать процесс с точностью до одного атома.

А началось всё с обращения в 2006 году к группе Шультена Бернарда Лима (Bernard Lim), кардиолога из Мейо и эксперта по тромбам. Он провёл серию экспериментов по измерению силы, необходимой для растяжения отдельных молекул фибриногена. Для этого он использовал методы атомно-силовой микроскопии и обнаружил некоторую закономерность, которую назвал "кривая силы растяжения".

Оказалось, что растяжение молекулы происходит в три последовательных стадии. Однако, что именно при этом происходит и какая часть молекулы ответственна за каждый этап, оставалось для него не ясным.

Дело в том, что фибриноген – симметричная молекула, от центра которой отходят переплетающиеся спиральные цепи. Растяжение этих спиралей, видимо, и определяет эластичность фибриногена.

Чтобы точно установить это команда учёных из Иллинойса провела своего рода компьютерную вискозиметрию, смоделировала и рассчитала на компьютере поведение при растяжении каждого атома молекулы фибриногена.

Результат — вот этот видеоролик (8,2 мегабайта, файл MPG), который доказывает, что "кривая силы растяжения" действительно существует, что это не "обман зрения", а истинное свойство белка.

"Моделирование показало, что каждый этап растяжения молекулы происходит закономерно, каждый участок спутанных спиралевидных цепей расправляется строго в определённом порядке", — пишут в пресс-релизе университета Иллинойса авторы.

Кроме того, Лим обнаружил, что на эластичность фибриногена влияют pH и содержание ионов кальция в подступающей крови. Это значит, что, варьируя тот или иной параметр с помощью лекарств, врачи смогут изменить происходящие в организме человека процессы тромбообразования.

"Так мы выяснили, каким образом мы можем повлиять на процесс разрушения или наоборот "усиления" фибриногеновых волокон", — говорит Эрик Ли (Eric Lee), аспирант университета Иллинойса.

Статья, посвящённая исследованию, опубликована в журнале Structure, а её укороченный вариант вы найдёте здесь(тут же находится несколько видеороликов, иллюстрирующих процессы, происходящие при растяжении молекулы).






Интересные новости
NASA отримало фінальне повідомлення від марсіанського вертольота, але він ще живийNASA отримало фінальне повідомлення від марсіанського вертольота, але він ще живий
Стоунхендж може бути пов'язаний із рідкісним місячним явищем: що з'ясували вченіСтоунхендж може бути пов'язаний із рідкісним місячним явищем: що з'ясували вчені
Блок рекламы


Похожие новости

Астрономы провели наиболее детальное исследование Млечного Пути и обнаружили «странные звезды»Астрономы провели наиболее детальное исследование Млечного Пути и обнаружили «странные звезды»
Палеонтологи обнаружили останки самого крупного хищника в ЕвропеПалеонтологи обнаружили останки самого крупного хищника в Европе
Обнаружение второго повторяющегося быстрого радиовсплеска подняло новые вопросыОбнаружение второго повторяющегося быстрого радиовсплеска подняло новые вопросы
Археологи нашли два затонувших корабля, «полных сокровищами»Археологи нашли два затонувших корабля, «полных сокровищами»
Астрономы обнаружили суперземлю, которая вращается вокруг близкой к Солнцу звездыАстрономы обнаружили суперземлю, которая вращается вокруг близкой к Солнцу звезды
Археологи обнаружили 3400-летний затопленный город на реке Тигр: фотоАрхеологи обнаружили 3400-летний затопленный город на реке Тигр: фото
Ученые обнаружили самое большое растение на ЗемлеУченые обнаружили самое большое растение на Земле
Археологи обнаружили в Египте статуэтку древнего архитектора ИмхотепаАрхеологи обнаружили в Египте статуэтку древнего архитектора Имхотепа
Палеонтологи обнаружили останки нового вида динозавров с «ужасающими» когтямиПалеонтологи обнаружили останки нового вида динозавров с «ужасающими» когтями
В Британии обнаружили древнеримский камень с оскорблениямиВ Британии обнаружили древнеримский камень с оскорблениями
Последние новости

Подгружаем последние новости